KAoS Policy and Domain Services:
Toward a Description-Logic Approach to Policy
Representation, Deconfliction, and Enforcement

A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, J. Lott
Institute for Human and Machine Cognition (IHMC), Univ. West Florida, 40 S. Alcaniz, Pensacola, FL 32501
{auszok, jbradshaw, rjeffers, nsuri, phayes, mbreedy, Ibunch, mjohnson, skulkarni, jlott} @ai.uwf.edu

Abstract

In this paper, we describe our initial implementation of

the KAoS policy and domain services. While initially

oriented to the dynamic and complex requirements of

software agent applications, the services are also being
adapted to general-purpose grid computing and web
services environments as well. The KAoS services rely
on a DAML description-logic-based ontology of the
computational environment, application context, and the
policies themselves that enables runtime extensibility
and adaptability of the system, as well as the ability to
analyze policies relating to entities described at different
levels of abstraction. An online theorem-prover is used
for policy disclosure, conflict detection, and
harmonization, and for reasoning about domain
structure and concepts. In future versions, DAML will be
replaced by OWL, and description-logic will be
supplemented with the possibility of rule-based
representation.

Keywords: policy, agent, ontology, DAML, domains,
KAoS, description logic, policy conflict resolution.

1. Introduction

The increased intelligence afforded by software
agents is both a boon and a danger. By their ability to
operate independently without constant human
supervision, they can perform tasks that would be
impractical or impossible using traditional software
applications. On the other hand, this additional
autonomy, if unchecked, also has the potential of
effecting severe damage in the case of buggy or
malicious agents. Techniques and tools must be
developed to assure that agents will always operate
within the bounds of established behavioral constraints
and will be continually responsive to human control [3,
71. Moreover, the policies that regulate the behavior of
agents should be continually adjusted so as to maximize

their effectiveness in both human and computational
environments [6].

Under DARPA and NASA sponsorship, we have
been developing the KAoS [4, 5, 7] policy and domain
services to increase the assurance with which agents can
be deployed in a wide variety of operational settings. In
conjunction with Nomads [18, 19] strong mobility and
safe execution features, KAoS services and tools allow
for the specification, management, conflict resolution,
and enforcement of policies within the specific contexts
established by complex organizational structures. While
initially oriented to the dynamic and complex
requirements of software agent applications, the services
are also being adapted to general-purpose grid
computing (http://www.gridforum.org) and web services
(http://www.w3.0rg/2002/ws/) environments as well.

Following a discussion of the background and
motivation for our approach (section 2), we will provide
an overview of the KAoS Policy Ontologies (KPO),
which represent policies, the relevant computational
environment, and application context declaratively using
the DARPA Agent Markup Language (DAML) (section
3). Then we present our approach to policy conflict
detection and resolution (section 4). As a next step, we
show details of the current implementation of the Policy
and Domain Services in KAoS including policy
distribution, disclosure, and enforcement mechanisms
(section 5). Finally, we describe current applications of
KAoS and Nomads (section 6) along with its limitations
and plans for future work (section 7).

2. Background and motivation

Interest in policy-based management approaches has
grown considerably in popularity over the last years
(http://www.policy-workshop.org). The scope of our
policy-based agent management approach includes the
typical security concerns such as authorization,
encryption, access and resource control policies, but also
goes beyond these in significant ways. For example,
KAoS pioneered the concept of agent conversation

policies [4, 5, 10]. In addition to conversation policies,
we are in the process of developing representations and
enforcement mechanisms for mobility policies [15],
domain registration policies, and various forms of
obligation policies (see below).

There are some important differences, however,
between the objectives of our approach and that of other
more typical approaches. First, the approach does not
assume that we are dealing with a homogeneous, static
set of components. Our approach seeks to enable policy
uniformity in domains that might be simultaneously
distributed across multiple platforms and execution
environments, as long as semantically equivalent
monitoring and enforcement mechanisms are available.
Second, insofar as possible the framework needs to
support dynamic runtime policy changes, and not merely
static configurations determined in advance. Third, the
framework needs to be extensible to a variety of
execution platforms with different enforcement
mechanisms—initially Java and Aroma [18, 19]—but in
principle any platform for which policy enforcement
mechanisms may be written. Fourth, the framework must
be robust and adaptable in continuing to manage and
enforce policy in the face of attack or failure of any
combination of components. Finally, we recognize the
need for easy-to-use policy-based administration tools
capable of containing domain knowledge and conceptual
abstractions that let application designers focus their
attention more on high-level policy intent than on
implementation details. Such tools require sophisticated
graphical user interfaces for monitoring, visualizing, and
dynamically modifying policies at runtime.

In short, the policy management framework must
ensure maximum freedom and heterogeneity of the
components and non-intrusiveness of the enforcement
mechanisms, while respecting the bounds of human-
determined constraints designed to ensure selective
conformity of behavior.

3. KAoS policy ontologies

The representation chosen to describe the policies and
their context largely determines the flexibility,
extensibility, and amenability to analysis of a given
implementation. KAoS services rely on a DAML
description-logic-based ontology of the computational
environment, application context, and the policies
themselves that enables runtime extensibility and
adaptability of the system, as well as the ability to
analyze policies relating to entities described at different
levels of abstraction. The representation facilitates
careful reasoning about policy disclosure, conflict
detection, and harmonization, and about domain
structure and concepts.

3.1. Short overview of DAML

The KAoS Policy Ontologies (KPO) are expressed
in DAML (http://www.daml.org). Designed to support
the emerging “Semantic Web,” DAML is the latest in a
succession of Web markup languages [2]. HTML, the
first Web markup language, allowed users to markup
documents with a fixed set of formatting tags for human
use and readability. XML allows users to add arbitrary
structures to their documents but expresses very little
directly about what the structures mean. RDF (Resource
Description Format) encodes meaning in sets of subject-
verb-object triples, where elements of these triples may
each be identified by a URI (typically a URL). OWL
(Ontology Web Language), a W3C-approved evolution
of DAML, is nearing final release
(http://www.w3.0rg/2001/sw/).

DAML extends RDF to allow users to specify
ontologies composed of taxonomies of classes and
properties, as well inference rules. These ontologies can
be used by people for a variety of purposes, such as
enabling more accurate or complex Web searches.
Agents can also use semantic markup languages to
understand and manipulate Web content in significant
ways; to discover, communicate, and cooperate with
other agents and services; or, as we outline in this paper,
to interact with policy-based management services and
control mechanisms.

3.2. Core ontologies for policy definition

The current version of KPO defines basic ontologies
for actions, actors, groups, places, various entities related
to actions (e.g., computing resources), and policies.
There are currently 79 classes and 41 properties defined
in the basic ontologies. It is expected that for a given
application, the ontologies will be further extended with
additional classes, individuals, and rules.

The actor ontology distinguishes between people
and various classes of software agents or components
that can be the subject of policy. Most agents can only
perform ordinary actions, however various agents that
are part of the infrastructure as well as authorized human
user may variously be permitted or obligated to perform
certain policy actions, such as policy approval and
enforcement. Groups of actors or other entities may be
distinguished according to whether the set of members is
defined extensionally (i.e., through explicit enumeration
in some kind of registry) or intentionally (i.e., by virtue
of some common property such as a joint goal that all
actors possess or a given place where various entities
may be currently located).

3.3. Representing policies in DAML

A policy is a statement enabling or constraining
execution of some type of action by one or more actors
in relation to various aspects of some situation. Our
current policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid
some action) and obligations (i.e., constraints that
require some action to be performed, or else serve to
waive such a requirement) [8].

enforcement. The most imported property value is,
however, the name of a controlled action class. Usually,
a new action class is built automatically when a policy is
defined. Through various property restrictions, a given
policy can be variously scoped, for example, either to
individual agents, to agents of a given class, to agents
belonging to a particular group, or to agents running in a
given physical place or computational environment (e.g.,
host, VM). Additionally, action context can be precisely
described by restricting values of its properties. Figure 1

<?xml version="1.0" ?>
<!DOCTYPE P1 [

7>
<rdf-RDF

>
<daml:Ontology rdf:about="">

</daml:Ontology>
<daml:Class rdf:1D="P1Action">
<rdfs:subClassOf>

<daml:Restriction>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>

</daml:Restriction>
</rdfs:subClassOf>
</daml:Class>

<policy:NegAuthorizationPolicy rdf-ID="P1">

<policy:hasPriority>1</policy:hasPriority>

</policy:NegAuthorizationPolicy>

<!ENTITY policy "http://ontology.coginst.uwf.edu/Policy.daml#" >
<IENTITY action "http://ontology.coginst.uwf-edu/Action.daml#" >
<!ENTITY domains "http://ontology.coginst.uwf.edu/ExamplePolicy/Domains.daml#" >

xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlins:daml="http://www.daml.org/2001/03/daml+oil#"
xmlins:policy="http://ontology.coginst.uwf.edu/Policy.daml#"

<daml:versioninfo>$ http.//ontology.coginst.uwf.edu/ExamplePolicy/P1.daml $</daml:versionlnfo>
<daml:imports rdf:resource="http://'www.daml.org/2001/03/daml+oil" />

<daml:imports rdf:resource="http://ontology.coginst.uwf.edu/Policy.daml" />

<daml:imports rdf:resource="http://ontology.coginst.uwf.edu/Action.daml” />

<daml:imports rdf:resource=" http://ontology.coginst.uwf.edu/ExamplePolicy/Domains.daml" />

<rdfs:subClassOf rdf:resource="&action; NonEncryptedCommunicationAction" />

<daml:onProperty rdf:resource="&action, #performedBy" />
<daml:toClass rdf:resource="&domains; MembersOfDomainArabello-HQ" />

<daml:onProperty rdf:resource="d&action, #hasDestination" />
<daml:toClass rdf:resource="&domains,notMembersOfDomainArabello-HQ" />

<policy:controls rdf:resource="#P1Action" />
<policy:hasSiteOfEnforcement rdf:resource="&policy;ActorSite" />

<policy:hasUpdateTimeStamp>446744445544</policy:hasUpdateTimeStamp>

Figure 1. Example policy in DAML

In DAML, a policy is represented as an instance of
the appropriate policy type with associated values for
properties: priority, update time stamp and a site of

shows an example of the policy written in DAML stating
that the members of some domain called Arabello-HQ
are forbidden to communicate with the outside of this

domain using unencrypted communication. The syntax
of this example may seem very complex, however, the
DAML policy is not meant to be written or analyzed by
a human but by the computer. A graphical interface
hides the complexity of this representation from the user.

4. Policy conflict resolution

The KAoS Policy Ontologies are intended for a
variety of purposes. One obvious application is during
inference relating to various forms of online or offline
analysis. They can be used for a variety of purposes,
including policy disclosure management, reasoning
about future actions based on knowledge of policies in
force, and in assisting users of policy specification tools
to understand the implications of defining new policies
given the current context and the set of policies already
in force.

In the current version of KAoS, changes or additions
to policies in force or a change in status of an actor (e.g.,
a human administrator being given new permissions;
software agent joining a new domain or moving to a new
host) requires logical inference to determine first of all
which policies are in conflict and second how to resolve
these conflicts [16]. We have implemented a general-
purpose algorithm for policy conflict detection and
harmonization whose initial results promise a high
degree of efficiency and scalability.

Authorlzed é Forbldden

Not Requred$ Requwed

Figure 2. Types of policy conflicts

Figure 2 shows the three types of conflict that can
currently be handled: positive vs. negative authorization
(i.e., being simultaneously permitted and forbidden from
performing some action), positive vs. negative obligation
(i.e., being both required and not required to perform
some action), and positive obligation vs. negative
authorization (i.e., being required to perform a forbidden
action). We have developed policy deconfliction and

harmonization algorithms within KAoS to allow policy
conflicts to be detected and resolved even when the
actors, actions, or targets of the policies are specified at
very different levels of abstraction. These algorithms
rely in part on a version of Stanford’s Java Theorem
Prover (JTP; 12) that we have integrated with KAoS.

4.1. Policy precedence conditions

Policy precedence conditions are needed to properly
execute the automatic conflict resolution algorithm.
When policy conflicts occur, these conditions are used to
determine which of the two policies being compared is
most important. The conflict can then be resolved
automatically in favor of the most important policy.
Alternatively, the conflicts can be brought to the
attention of a human administrator who can make the
decision manually.

We currently rely exclusively on the combination of
numeric policy priorities' and update times to determine
precedence—the larger the integer and the more recent
the update the greater the priority. This is consistent with
the natural intuition that more recent and higher priority
policies should trump older and lower priority ones.

In the future we intend to allow people additional
flexibility in designing the nature and scope of
precedence conditions. For example, it would be
possible to define precedence based on the relative
authorities of the individual who defined or imposed the
policies in conflict, which policy was defined first,
which has the largest or smallest scope, whether negative
or positive authorization trumps by default, whether
subdomains takes precedence over superdomains or vice
versa, and so forth.

4.2. Steps in policy conflict resolution.

The steps in order to resolve policy conflicts in the

set of policies are as follow:

1. DAML policy ontologies are loaded into JTP
along with the set of DAML policies to be
deconflicted.

2. A list of all policies in constructed and sorted
according to user-defined criteria for policy
precedence.

3. For each policy in the sorted list, iterate through
all the elements with a lower priority and check
to see if there is a policy conflict. A policy
conflict occurs if the two policies are instances
of conflicting types and if a subsumption

! In the absence of an explicitly rated priority, the priority value
of a policy may be “inherited” from the person who defined the
policy or the priority of the controlled action class.

algorithm determines that the action classes that
the two policies control are not disjoint.

4. The lower priority policy from the conflicting
pair of policies is removed from the list and the
policy harmonization algorithm is invoked. It
attempts to modify the policy with the lower
precedence to the minimum degree necessary to
resolve the conflict (if the policies are of equal
precedence, a user may be required to specify
which policy will take precedence). The
harmonization algorithm may generate zero,
one or several new policies to replace the
removed policy.

5. The newly constructed harmonized policies
inherit the precedence and the time of last
update from the removed policy, and a pointer
to the original policy is maintained so that it can
be recovered if necessary as policies continue to
be added or deleted in the future.

4.3. Details of policy harmonization

Action Property
Range

Actor Range

Action Type Range

Harmonization

=

priority P1 < priority P4

P1-H1

P1-H
P1-H2 3

Figure 3. Graphical representation of policy
harmonization

P4

The derivation of the newly-generated set of
harmonized policies can be understood by imagining an
intersection of two N-dimensional Cartesian products:

If P and P4 are two Cartesian products defined as:
Pl =DIlxDI2x ... xDIn
P4=D21xD22xx D2n

then
PI\P2 = subPl + subP2 + ... + subPn

where

subPk =
(D11ND21) x ...
x (D1k\D2k) x
DI(k+1)x..xDlin

x (D1(k-1)ND2(k-1))

Figure 3 shows a 3-D graphical representation of
policy harmonization. Mapping the mathematical
definition above to the generation of harmonized policies
we get the following:

1. The first harmonized policy has a range of
actors that corresponds to the difference
between the ranges of the two original policies
and a controlled action and range of values on
the action properties that correspond to those of
the lower-precedence policy.

2. The second harmonized policy has a range of
actors that corresponds to the intersection of the
ranges of the two original policies, a controlled
action that corresponds to the differences
between those of the two policies, and a range
of values on the action properties that
correspond to that of the lower-precedence
policy.

3. Additional harmonized policies are built to
correspond to each action properties in the two
original policies. The range of actors
corresponds to the intersection of the ranges of
the two original policies and the controlled
action corresponds to the intersection between
those of the two policies.

The results of computing any of the above policies

may be empty.

5. KAoS Policy and Domain Services

KAoS is a collection of componentized services
compatible with several popular agent frameworks,
including Nomads [18, 19], the DARPA CoABS Grid
[14], the DARPA ALP/Ultra*Log Cougaar framework
(http://www.cougaar.net) and CORBA
(http://www.omg.org). While initially oriented to the
dynamic and complex requirements of software agent
applications, the services are also being adapted to
general-purpose grid computing
(http://www.gridforum.org) and web services
(http://www.w3.0rg/2002/ws/) environments as well.
The adaptability of KAoS is due in large part to its
pluggable infrastructure based on Sun’s Java Agent
Services (JAS) (http://www.java-agent.org). For a full
description of KAoS, the reader is referred to [4; 5; 6; 7].

Groups of people and computational entities are
logically structured into domains and subdomains to
facilitate policy administration. Domains may represent
any sort of group imaginable, from potentially complex
organizational structures to administrative units to

dynamic task-oriented teams with continually changing
membership. Membership in a given domain can extend
across host boundaries and, conversely, multiple
domains can exist concurrently on the same host.
Domains may be nested indefinitely and, depending on
whether policy allows, membership in more than one
domain at a time is possible.

KAoS domain services are not fully described in this
paper, however the following subsections describe
KAoS policy services in more detail.

5.1. Initialization and Querying

During the bootstrapping process, the core policy
ontologies (KPO) are loaded into JTP. Afterwards,
additional ontologies specific to a particular environment
or application can be loaded dynamically from the KAoS
Policy Administration Tool (KPAT; see section 5.2). In
addition to a base set of policies, these additional
ontologies usually include descriptions of domain
structures and the entities associated with them.

The policy service is configured to handle a variety
of queries at different stages of the policy management
process. Some of the more common ones are listed
below.

Defining a new policy (or editing an existing one):

1. Obtain all the action classes that can be
performed by either a given class of actors or a
given actor instance.

2. Obtain all the properties of a given action class.

3. Obtain the range of targets for the property
applicable to the given action class.

4. Obtain all the known subclasses of the Target
class within a given range.

5. Obtain all the known instances of the Target
class within a given range.

Detecting policy conflicts:

6. Check if two subclasses of the action class
controlled by two selected polices are disjoint.

7. Check if the subclass of the action class
controlled by the policy with the lower priority
is a subclass of the subclasses of the action class
controlled by the policy with the higher priority.

Harmonizing policies:

8. Obtain the explicit superclasses of the action
classes controlled by the policies.

9. Obtain the range of a property in the action
classes controlled by the policies.

10. Check if the property in one controlled action
class is a subproperty of some properties in the
second controlled action class.

Policies distribution and disclosure:

11. Obtain all the policies whose controlled actions
can be performed by either a given class of
actors or a given actor instance.

12. Check if the given action instance is an instance
of some action class controlled by existing
policies.

5.2. KAoS Policy Administration Tool (KPAT)

The KAoS Policy Administration Tool (KPAT?)
implements a graphical user interface to domain and
policy management functionality of KAoS. It has been
developed to make policy specification, revision, and
application easier for administrators without extensive
training (Figure 4).

Actor Classes _Namespaces o i i
CoAXPolicy4 harmonized
Domain View 1 e .
#policy-fa6914b4-00f0-0000-8000-0000deadbeef into

¢ 'gﬂf CoAXPolicylHarmonized3
9 O Arabeloa CoAXPolicy1Harmonized1

ad3:-7fef

Aiahelio-Coalition-Conting) 3
JiabelloSensors GoAXPolicylHarmonized4
¢ B oawe
0K
28 o

e
! - butes Harm?
R Abeloint] X 0

Australiz-HO » L »
o I} AinniCoaltion 0‘ Committing and Distributing Policies

GaoHO =" Duration of the policy commit: 42453ms0 [»
UkHQ []

IEIN

5/;1%0 Cancel —‘
Changes
[||
‘ ’@ ’ Commit. Refresh

Figure 4. KPAT notifies the user of the results of
policy harmonization

KPAT can be used to browse and load ontologies, to
define, deconflict, and commit new policies, and to
modify or delete old ones. The generic DAML Policy
Editor (Figure 5) is driven by the ontologies loaded into
JTP and always provides the user with the list of choices
narrowed to the current context using the queries
enumerated in the previous subsection. Custom editors
tailored to particular kinds of policies may also be added
to KPAT and triggered if a policy about the action class
associated with the given custom editor is selected.

When a user commits a change to an ontology (e.g.,
a new or edited policy, changes to domain structure) the
Jena framework [11] is used to dynamically build
DAML representation based on the values selected by
the user.

2 Pronounced KAY-pat.

.

Policy ID:

policy-07ade01d-00f1-0000-8000-0000deadbeef

golicvuame: ‘COAXPOIicv4

Policy Description: jasDestination MembersGfDomainCoaliti

on-Binni if the semantic filtering allows [

it.

-

-

Policy Modality: |P05Authorizati0nP0Iicv

-

Subject Name: Arabello-Intel

Subject ID:

6927cfdofa67cdal:67b241:f107abfad3:-7fef

v set policy in force

Policy Priority

Policy Timestamp: null

[T use subject's complement

Available Actions
ApproveRegistrationAction
Nothing
ApproveAction

Selected Actions
CommunicationAction

ProposeAction |

Unlock |

1]

NonSignedCommunicationAction

Available Roles |

Selected Role

performedOn

= Select »> ii

hasDestination

carriesMessage

<« Deselect << ||

Range: 2 Individual

W Class

[JJ Use Target's Complement

Available Ranges

|
2l

GroupActor

= Select =

o Selected Ranges
|||MemberstDomainBinni—CoaIition

MembersOfDomainUNSGO
MembersOfDomainCoalition-Observers

—m << Deselect << |||

p

21” Add Target |||
!

Target Role Name Target Range \ Comp |
carriesCoAXMessage [RestrictedSensorReport] [l =
1] D]]

[show Policv| Remove Target " Help || OK H Cancel |

Figure 5. Generic DAML Policy Editor. Custom editors tailored to specific classes of
policy can also be easily developed.

5.3. Policy distribution and disclosure

Figure 6 shows the major components of the KAoS
policy and domain services architecture. KAoS Domain
Managers (DM) act in the role of policy decision points
to determine whether agents can join their domain and
for policy conflict resolution. The DM is responsible for
ensuring policy consistency at all levels of a domain
hierarchy, for notifying Guards about changes in policy
or other aspects of system state that may affect their
operation, and for storing state in the directory service.

Because DM’s are stateless, one DM instance may
serve multiple domains or conversely, a single large
domain may require several instances of the DM to
achieve scalable performance.

Policies are stored within ontologies in the directory
service (DS). Although DM’s normally provide the
limited public interface to the DS, private interfaces may
allow the DS to be accessed by other authorized entities

in accordance with policies on disclosure.’ For example,
trusted components could be allowed to perform queries
concerning domain policies in advance of submitting a
registration request to a new domain. Because the
policies in the directory service are expressed
declaratively, some forms of analysis and verification
can be performed in advance and offline, permitting
execution mechanisms to be as efficient as possible.

Guards are responsible for policy enforcement
within the bounds of a specified computational
environment. They interpret policies that have been
approved by the DM and enforce them with appropriate
native enforcement mechanisms. While KPAT and the
DM, and the Guards are intended to work identically
across different agent platforms (e.g., DARPA CoABS
Grid, Cougaar) and execution environments (e.g., Java
VM, Aroma VM), enforcement mechanisms are
necessarily designed for a specific platform and
execution environment.

> We are investigating the work of Seamons [17] on incremental
policy disclosure strategies for future use in KAoS.

KAoS Policy ,
OEN A thorized user makes Policy Management
Admin changes over the Web Framework
[Tool (KPAT))
- 1. Ensures policy
_ KAoS \ consistency at all levels
Sereh . Domain N 2 IS\Itoris policy dchanges
g /3. Notifies guards
— ~ Manager Yy
Event-driven S s

policy changes

Policy Directory ||

1. KAoS DAML Policy Ontologies
2. Distributed networked availability
3. Secure

Native
Enforcers,

Guard is responsible for:
1. Interpreting policy
2. Enforcing with appropriate native mechanism

Figure 6. KAoS Policy Service architecture

Whereas KAoS can currently represent and
deconflict both authorization and obligation policies, the
current implementation only supports enforcement for
authorization policies. In the near future, we will extend
KAoS policy services with support for obligation
policies through the use of monitors (monitoring
compliance with obligations) and enablers (facilitating
the performance of selected obligations).

5.3.1 Enforcers Enforcers are the mechanism by which
Guards ensure compliance with authorization policies.
The enforcer cannot be made fully generic, as it is
inherently specific to the type or types of actions being
enforced by it and to the environment in which these
actions are being performed. What can be made generic
however is the interface to the system answering the
question, “is a given action authorized or not?” By
defining standard interfaces for answering this question,
we aim to help enable developers to concentrate on the
application-specific portions of the enforcers:

* intercepting the action being attempted by the
controlled actors;

* creating an object with a description of the
action and calling the method with it asking for
authorization on the generic part of the
enforcer;

* Dblocking or allowing the action based on the
obtained result.

All of the capabilities of the policy services are

made fully available to the developer

In order to implement a new enforcer the

programmer extends the provided class GenericEnforcer
and implement its abstract methods:

e getControlledActionClasses - provides names
of the action classes on which policies can be
enforced.

* initEnforcer - initializes the specific enforcer
capabilities by inserting the triggering or
monitoring functionality into the computing
environment (e.g., installing filters or resource
usage monitors).

The capability for interception action inserted by the
initEnforcer method wuses the method
isActionAuthorized, which is provided by the
GenericEnforcer superclass. The method takes as the
parameter a description of the action, which includes:

* unique ID of the agent performing the action;

* names of the Action classes describing the type
of the intercepted action instance consistent
with the ontologies;

¢ list of action property descriptions comprising
the context of the action.

Each action property description requires the following
information:

* name of the property, consistent with the
ontology;

* indication of the form of the target description,
which can be either the unique ID of the target
(String), the DAMLModel (from Jena [11]) with
target instance description, or opaque
application-specific data containing the instance
description;

* actual data containing the target description in
one of the forms indicated above.

It is the responsibility of the developer to understand
the definition of the action class(es) in the ontology that
the enforcer is being designed to enforce. An action class
can be represented as a list of properties whose names
are in the ontology. By referencing a property using this
name the developer can determine the value of the
property. We have developed a mapping tool, which
analyzes a given ontology and generates the ontology
names as Java constants.

5.3.2 Enforcer repository Enforcer class names are
recorded in the Enforcer Registry. The registry
associates an enforcer class with the names of the action
classes on which it can enforce policy.

The registry is either stored in a local Jar file or can
be made available on the network. When a particular
enforcer is needed, a lookup is performed on the registry.
If an enforcer is found, it can then be created through the
Java Reflection mechanism.

Guards are responsible for creating instances of the
enforcers they need to control the actions specified by
policies it receives from Domain Managers. Of course
this presumes that an appropriate enforcer is available in
the registry. The use of a registry allow for a dynamic
extension of the system. Even when agents are running it
is possibly to dynamically insert a new enforcer class
into a network-based Enforcer Registry so that new

policies about a class of actions controlled by this
enforcer can be defined. The list of actions shown in
KPAT is limited to these for which there are enforcers in
the Enforcer Registry. In this way the system can prevent
attempts to put a policy in force for which there is no
available enforcer.

5.3.3. Authorization mechanism As mentioned
previously, the enforcer is concerned with getting the
answer to the question, “is a given action authorized or
not?” It is not so much concerned with how this answer
is obtained. In the current KAoS implementation, it is
possible to answer the authorization question in one of
three ways: through the use of the Directory Service,
some intermediary module, or the enforcer itself.

For performance reasons, it is preferable to answer
the authorization question locally in the enforcer or an
intermediary module whenever possible. In this way
enforcement can also continue even if the connection to
the Directory Service is interrupted. In such cases, the
worst that could happen is that the DS will be
temporarily unable to notify enforcers about policy-
relevant changes to the ontology.

Every actor in the system is associated with a Guard
that is responsible for the computational environment in
which it is running. When the guard receives a new
policy, it obtains the types of actions controlled by this
policy and checks to see if it already has an enforcer for
these action types. If not, it will consult the Enforcer
Registry and create the enforcer. When the appropriate
enforcer is found, the policy is pushed to it. The generic
enforcer’s policy storage object appropriately adds,
removes or updates policies in its storage.

These policies are used by the isdctionAuthorized
method. When the method is executed, it traverses the
enforcer policy storage and checks to see if the given
action instance is in the range of actions controlled by
any policy (the range of actions is defined by the action
class associated with a policy). This can be checked by
investigating all of the action properties. Each property
has to be checked to assure that the value assigned to this
property in the action instance description is in the range
of this property defined in the action instance description
by the appropriate restriction class. The enforcer can get
different forms of the description of the instance.

When the DS already knows about the instance, its
unique id can be provided. This is the case of any
concepts defined in the preloaded ontologies or
explicitly registered in the directory (e.g., actors ,
domains). In this situation, the enforcer has either
already cached the set of instances from its range (which
it obtained from the DS), or can obtain this set directly
and then easily check to see if the instance is within the
set. There are ways to tailor the performance of this

mechanism, depending whether this set is dynamic or
static.

Sometimes the instance is new. For example, it may
have just been created in the context of the action, as is
often the case in message content filtering, where the
content can be very diverse and the description complex.
In these cases, the description of the target instance has
to be built dynamically, and two options of passing it to
the authorization mechanism exist. We can use either
DAMLModel object (from Jena) if it is possible to
analyze the value of the property or if it is already
encoded in DAML, or else we can use opaque
application-specific data containing the instance
description.

5.3.4. Semantic matching Semantic matching is
performed by the authorization mechanism by its
looking into the Semantic Matcher Repository to
determine if there is a matcher associated with the given
action property name. Each matcher in the repository
implements the same interface containing methods to:

* initialize the specific semantic matcher for
instance loading necessary ontologies, and so
forth;

* check to see if the instance from the provided
description is of the type indicated by the name
of the provided ontology class.

5.3.5. Handling partial action description Situations
sometimes arise when an enforcer is able to provide only
partial information about the intercepted action. In such
cases, the following approach is applied. If the action has
a given property and the description of the action is
missing the value for this property then the algorithm
assumes that it matches the property range in the case of
negative authorization policies or does not match in the
case of positive authorization policies.

The rationale for doing this is that, in the case of
negative authorization, since we do not know the value
we cannot exclude the possibility that it was in the given
range. To be on the safe side we assume, therefore, that
it was in the range. Similarly, in the case of positive
authorization, since we cannot exclude the possibility
that the value was out of range, we assume that it was
indeed out of range. Further experience will tell us
whether these assumptions should be made to hold in all
applications.

Additionally, the algorithm can investigate
subproperties relations. For instance, an action
description may lack the value for some property P. If,
however, a value is defined for some subproperty or
super-property of the property P then this value maybe
taken into account. This aspect requires further study and
experimentation.

5.3.6 Default authorization When the authorization
mechanism does not find any policy applicable to the
provided action instance, it still must answer the
authorization question. Hence, the need for a default
authorization modality for enforcers that either permits
all actions not explicitly forbidden or else forbids all
actions not explicitly permitted.

The current way of configuring the default
authorization modality is on a per domain basis. Each
domain can have one default authorization: negative or
positive. In order to resolve potential conflicts, when an
agent is registered in more than one domain, a domain
can have an associated priority. When a guard registers
itself in various domains, it receives the default
authorizations from them. If they are in conflict, the
guard selects the default coming from the domain with
the highest priority. Then it passes this default to its
enforcers.

We will investigate more flexible means of
configuring default authorization modalities once more
sophisticated precedence mechanisms that go beyond
current numeric priority schemes are in place.

5.4. Policy enforcement mechanisms

In applications to date, we have relied on several
different kinds of enforcement mechanisms.
Enforcement mechanisms built into the execution
environment (e.g., OS or Virtual Machine level
protection) are the most powerful sort, as they can
generally be used to assure policy compliance for any
agent or program running in that environment, regardless
of how that agent or program was written. For example,
the Java Authentication and Authorization Service
(JAAS) provide methods that tie access control to
authentication. In KAoS, we have in the past developed
methods based on JAAS that allow policies to be scoped
to individual agent instances rather than just to Java
classes. Currently, JAAS can be used with Java VMs; in
the future it should be possible to use JAAS with the
Aroma VM as well. As described above, the Aroma VM
provides, in addition to Java VM protections, a
comprehensive set of resource controls for CPU, disk
and network. The resource control mechanisms allow
limits to be placed on both the rate and the quantity of
resources used by Java threads. Guards running on the
Aroma VM can use the resource control mechanisms to
provide enhanced security (e.g., prevent or disable
denial-of-service attacks), maintain quality of service for
given agents, or give priority to important tasks.

A second kind of enforcement mechanism takes the
form of extensions to particular agent platform
capabilities. Agents that participate in that platform are
generally given more permission to the degree they are
able to make small adaptations in their agents to comply

with policy requirements. For example, in applications
using the DARPA CoABS Grid, we have defined a
KAoSAgentRegistrationHelper to replace the default
GridAgentRegistrationHelper. Grid agent developers
need only replace the class reference in their code to
participate in agent domains and be transparently and
reliably governed by policies currently in force. On the
other hand, agents that wuse the default
GridAgentRegistrationHelper do not participate in
domains and as a result they are typically granted very
limited permissions in their interactions with domain-
enabled agents.

Finally, a third type of enforcement mechanism is
necessary for obligation policies. Because obligations
cannot be enforced through preventive mechanisms,
enforcers can only monitor agent behavior and determine
after-the-fact whether a policy has been followed. For
example, if an agent is required by policy to report its
status every five minutes, an enforcer might be deployed
to watch whether this is in fact happens, and if not to
either try to diagnose and fix the problem, or
alternatively take appropriate sanctions against the agent
(e.g., reduce permissions or publish the observed
instance of noncompliance to an agent reputation
service). In the near future, we plan to develop monitors
and enablers to allow the full use of obligation policies.

Each policy has a property that defines the site of
policy enforcement. For example, access control policies
are typically enforced by a mechanism directly
associated with the resource to be protected (i.e., the
target). However in some cases, administrators may not
have control over this resource and instead may require
the policy to be enforced by a mechanism associated
with the actor (i.e., the subject) or some other entity
under their purview.

5.5. Performance of the current system

We have tested the performance of KAoS policy
conflict resolution algorithms on a machine with
Pentium III 1.2 GHz and 640 MB RAM using JDK
1.3.1. In the limited non-optimized tests we have made
to date, policy commitment, conflict resolution, and
harmonization is consistently performed in a fraction of
a second. For reasons that are not yet fully understood,
however, assertion of each new policy into the JTP
database typically takes an order of magnitude longer
than that. Stanford JTP developers are currently working
on performance improvements that should significantly
affect these results.

6. Example applications

KAoS policy and domain services are being
extended and evaluated in the context of several
applications.

The first application is the DARPA CoABS-
sponsored Coalition Operations Experiment (CoAX)
(http:// www.aiai.ed.ac.uk /project/ coax/) [1; 20]. CoAX
models military coalition operations and implement
agent-based systems to mirror coalition structures,
policies, and doctrines. The project aims to show that the
agent-based computing paradigm offers a promising new
approach to dealing with issues such as the
interoperability of new and legacy systems, the implicit
nature of coalition policies, security, and recovery from
attack, system failure, or service withdrawal. KAoS
provides mechanisms for overall management of
coalition organizational structures represented as
domains and policies, while Nomads provides strong
mobility, resource management, and protection from
denial-of-service attacks for untrusted agents that run in
its environment.

Within the DARPA Ultra*Log program
(http://www.ultralog.net) we are developing agent policy
and domain services to assure the robustness and
survivability of logistics functionality in the face of
information warfare attacks or severely constrained or
compromised computing and network resources.

Another application is within the NASA Cross-
Enterprise and Intelligent Systems Programs, where we
are investigating the use of policy-based models to drive
human-robotic teamwork and adjustable autonomy for
highly-interactive autonomous systems such as the
Personal Satellite Assistant (PSA), a softball-sized flying
robot that is being designed to operate onboard
spacecraft in pressurized micro-gravity environments
[6]. The same approach is also being generalized for use
in other testbeds, such as unmanned vehicles and other
highly interactive autonomous systems.

Under funding from DARPA's Augmented
Cognition Program, we are taking this approach one step
further as we investigate whether a general policy-based
approach to the development of cognitive prostheses can
be formulated, where human-agent teaming could be so
natural and transparent that robotic and software agents
could appear to function as direct extensions of human
cognitive, kinetic, and sensory capabilities [3; 9].

7. Current limitations and future work

We are continuing research and development to
address various limitations of the current
implementation. The ontology and reasoning does not
yet adequately support reasoning about composite
actions or processes and relations between fine-grain

actions and composed by them high-level actions. We
plan to add foundational support for composition of
abstract, high-level policies from simple policies through
the concept of policies sets. Under funding from the
DARPA DAML program, we are also working in
collaboration with Austin Tate to investigate how
DAML-S (http://'www.daml.org/services/) may address
some of these issues.

Another limitation is our current ad hoc approach to
conditional policies through the use of a policy condition
monitor. In the coming year, we plan to investigate the
use of DAML-R/RuleML for this purpose. We also plan
to deal more adequately with the temporal aspects of
policy through incorporation of the DAML-Time
ontologies.

Additional future work will include full support for
obligation policies, performance enhancements to
reasoning mechanisms, simplification and streamlining
of the KPAT user interface, transition from DAML to
OWL, and policy implementation constraint resolution
to deal with policies involving contention for finite
resources. We will also continue in our efforts to develop
versions of KAoS suitable for deployment in Web
Services and Grid Computing environments.

Acknowledgments

The authors gratefully acknowledge the sponsorship
of this research by the NASA Cross-Enterprise and
Intelligent Systems Programs, and a joint NASA-
DARPA ITAC grant. Additional support was provided
by DARPA’s CoABS, Ultra*Log, DAML, and
Augmented Cognition programs, and by the Army
Research Lab’s Advanced Decision Architectures
program (ARLADA). We are grateful for the
contributions of Alessandro Acquisti, Patrick
Beautement, Guy Boy, Marshall Brinn, Murray Burke,
Mark Burstein, Marco Cavalho, Bill Clancey, Tom
Cowin, Rob Cranfill, Naranker Dulay, Paul Feltovich,
Rich Feiertag, Richard Fikes, Ken Ford, Mark Greaves,
Jack Hansen, Robert Hoffman, Wayne Jansen, Jessica
Jenkins, Mike Kerstetter, Mike Kirton, Emil Lupu,
Deborah McGuinness, Sheila Mcllraith, Nicola
Muscettola, Anil Raj, Tim Redmond, Sue Rho, Dylan
Schmorrow, Mike Shafto, Maarten Sierhuis, Morris
Sloman, Austin Tate, Ron Van Hoof, and Tim Wright.

References

[1] Allsopp, D., Beautement, P., Bradshaw, J. M.,
Durfee, E., Kirton, M., Knoblock, C., Suri, N., Tate, A.,
& Thompson, C. (2002). Coalition Agents eXperiement
(CoAX): Multi-agent cooperation in an international
coalition setting. A. Tate, J. Bradshaw, and M.
Pechoucek (Eds.), Special issue of IEEE Intelligent
Systems, 17(3), 26-35.

[2] Berners-Lee, T., Hendler, J., & Lassila, O. (2001).
The semantic Web. Scientific American, 284: 5 (May),
34-43.

[3] Bradshaw, J. M., Beautement, P., Raj, A., Johnson,
M., Kulkarni, S., & Suri, N. (2002). Making agents
acceptable to people. In N. Zhong & J. Liu (Ed.),
Handbook of Intelligent Information Technology. (in
preparation). Amsterdam, The Netherlands: IOS Press.

[4] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley,
J. D. (1997). KAoS: Toward an industrial-strength
generic agent architecture. In J. M. Bradshaw (Ed.),
Software Agents. (pp. 375-418). Cambridge, MA: AAAI
Press/The MIT Press.

[5] Bradshaw, J. M., Greaves, M., Holmback, H., Jansen,
W., Karygiannis, T., Silverman, B., Suri, N., & Wong,
A. (1999). Agents for the masses: Is it possible to make
development of sophisticated agents simple enough to be
practical? [EEE Intelligent Systems (March-April), 53-
63.

[6] Bradshaw, J. M., Sierhuis, M., Acquisti, A.,
Feltovich, P., Hoffman, R., Jeffers, R., Prescott, D., Suri,
N., Uszok, A., & Van Hoof, R. (2002). Adjustable
autonomy and human-agent teamwork in practice: An
interim report on space applications. In H. Hexmoor, R.
Falcone, & C. Castelfranchi (Ed.), Agent Autonomy. (in
press). Kluwer.

[7] Bradshaw, J. M., Suri, N., Breedy, M. R., Canas, A.,
Davis, R., Ford, K. M., Hoffman, R., Jeffers, R.,
Kulkarni, S., Lott, J., Reichherzer, T., & Uszok, A.
(2002). Terraforming cyberspace. In D. C. Marinescu &
C. Lee (Ed.), Process Coordination and Ubiquitous
Computing. (pp. 165-185). Boca Raton, FL: CRC Press.
Expanded version of an article originally published in
IEEE Intelligent Systems, July 2001, pp. 49-56.

[8] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M.
S. (2000). Ponder: A Language for Specifying Security
and Management Policies for Distributed Systems,
Version 2.3. Imperial College of Science, Technology
and Medicine, Department of Computing, 20 October
2000.

[9] Ford, K. M., Glymour, C., & Hayes, P. (1997).
Cognitive prostheses. A Magazine, 18(3), 104.

[10] Greaves, M., Holmback, H., & Bradshaw, J. M.
(2001). Agent conversation policies. In J. M. Bradshaw
(Ed.), Handbook of Agent Technology. (in preparation).
Cambridge, MA: AAAI Press/The MIT Press.

[11] Jena, http://www.hpl.hp.com/semweb/
[12] JTP - Java Theorem
http://www ksl.stanford.edu/software/JTP/
[13] Kagal, L., Finin, T. & Joshi, A. (2001). A
Delegation-based Distributed Trust Model for Multi
Agent Systems, under review,
http://www.csee.umbc.edu/~finin/papers/aa02/

[14] Kahn, M., & Cicalese, C. (2001). CoABS Grid
Scalability Experiments. O. F. Rana (Ed.), Second
International Workshop on Infrastructure for Scalable
Multi-Agent Systems at the Fifth International
Conference on Autonomous Agents. Montreal, CA, New
York: ACM Press,

[15] Knoll, G., Suri, N., & Bradshaw, J. M. (2001). Path-
based security for mobile agents. Proceedings of the
First International Workshop on the Security of Mobile
Multi-Agent Systems (SEMAS-2001) at the Fifth
International Conference on Autonomous Agents (Agents
2001), (pp. 54-60). Montreal, CA, New York: ACM
Press,

[16] Lupu, E. C., & Sloman, M. S. (1999). Conflicts in
policy-based distributed systems management. [EEE
Transactions on Software Engineering,—Special Issue
on Inconsistency Management, 25(6), November/
December, 852-869.

[17] Seamons, K. E., Winslet, M., & Yu, T. (2001).
Limiting the disclosure of access control policies during
automated trust negotiation. Proceedings of the Network
and Distributed Systems Symposium.

[18] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P.
T., Hill, G. A., & Jeffers, R. (2000). Strong Mobility and
Fine-Grained Resource Control in NOMADS.
Proceedings of the 2nd International Symposium on
Agents Systems and Applications and the 4th
International Symposium on Mobile Agents (ASA/MA
2000). Zurich, Switzerland, Berlin: Springer-Verlag,

[19] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P.
T., Hill, G. A., Jeffers, R., Mitrovich, T. R., Pouliot, B.
R., & Smith, D. S. (2000). NOMADS: Toward an
environment for strong and safe agent mobility.
Proceedings of Autonomous Agents 2000. Barcelona,
Spain, New York: ACM Press,

[20] Suri, N., Bradshaw, J. M., Burstein, M. H., Uszok,
A., Benyo, B., Breedy, M. R., Carvalho, M., Diller, D.,
Groth, P. T., Jeffers, R., Johnson, M., Kulkarni, S., &
Lott, J. (2002). DAML-based policy enforcement for
semantic data transformation and filtering in multi-agent
systems. (submitted for publication).

Prover,

